179 research outputs found

    Magnitude of rift-related burial and orogenic contraction in the Marrakech High Atlas revealed by zircon (U-Th)/He thermochronology and thermal modelling

    Get PDF
    The Atlas of Morocco is a continental rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The High Atlas south of Marrakech, with exposures of basement and Triassic early synrift deposits, has been viewed as a high during the Mesozoic rifting. First zircon (U-Th)/He ages and thermal models obtained from 42 samples in the Marrakech High Atlas following two NNW-SSE transects across the mountain belt reveal that in contrast to previous models, the Triassic-Jurassic rift was well developed in the Marrakech High Atlas (with more than 4.5-6 km of rift-related deposits). Middle Jurassic-Early Cretaceous zHe cooling ages obtained indicate that rift-related subsidence in the Marrakech High Atlas finished in the Middle Jurassic and was followed by a period of exhumation where 2-3 km of rock were eroded. Thermal models from zHe data provide the first thermochronologic clue for a Late Cretaceous initiation of the Atlas compression-driven exhumation in the inner parts of the Marrakech High Atlas. The Triassic-Jurassic basin reconstruction assisted by thermochronology highlights a key role of inherited basement anisotropy in rift orientation and evolution, and on its subsequent inversion. Comparison of present-day and restored sections to the rifting stage aided by thermochronology suggests minimum values of total orogenic shortening in the Marrakech High Atlas of 13 to 14 km (21 to 17%), with exhumation of 1 to more than 5 km of rocks. Similar zHe ages on both sides of the Tizi n'Test fault evince minor vertical movements along the fault during the Atlas orogeny

    Fault Slip and Exhumation History of the Willard Thrust Sheet, Sevier Fold‐Thrust Belt, Utah: Relations to Wedge Propagation, Hinterland Uplift, and Foreland Basin Sedimentation

    Get PDF
    Zircon (U‐Th)/He (ZHe) and zircon fission track thermochronometric data for 47 samples spanning the areally extensive Willard thrust sheet within the western part of the Sevier fold‐thrust belt record enhanced cooling and exhumation during major thrust slip spanning approximately 125–90 Ma. ZHe and zircon fission track age‐paleodepth patterns along structural transects and age‐distance relations along stratigraphic‐parallel traverses, combined with thermo‐kinematic modeling, constrain the fault slip history, with estimated slip rates of ~1 km/Myr from 125 to 105 Ma, increasing to ~3 km/Myr from 105 to 92 Ma, and then decreasing as major slip was transferred onto eastern thrusts. Exhumation was concentrated during motion up thrust ramps with estimated erosion rates of ~0.1 to 0.3 km/Myr. Local cooling ages of approximately 160–150 Ma may record a period of regional erosion, or alternatively an early phase of limited... (see full abstract in article)

    Application of (U-Th)/He thermochronometry as a geothermal exploration tool in extensional tectonic settings: the Wassuk Range, Hawthorne, Nevada

    Get PDF
    Navy Geothermal Program Office at China Lake, C

    Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clift, P. D., Zhou, P., Stockli, D. F., & Blusztajn, J. Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth, 10(3), (2019): 647-661, doi:10.5194/se-10-647-2019.New bulk sediment Sr and Nd isotope data, coupled with U–Pb dating of detrital zircon grains from sediment cored by the International Ocean Discovery Program in the Arabian Sea, allow the reconstruction of erosion in the Indus catchment since ∌17 Ma. Increasing ΔNd values from 17 to 9.5 Ma imply relatively more erosion from the Karakoram and Kohistan, likely linked to slip on the Karakoram Fault and compression in the southern and eastern Karakoram. After a period of relative stability from 9.5 to 5.7 Ma, there is a long-term decrease in ΔNd values that corresponds with increasing relative abundance of >300 Ma zircon grains that are most common in Himalayan bedrocks. The continuous presence of abundant Himalayan zircons precludes large-scale drainage capture as the cause of decreasing ΔNd values in the submarine fan. Although the initial increase in Lesser Himalaya-derived 1500–2300 Ma zircons after 8.3 Ma is consistent with earlier records from the foreland basin, the much greater rise after 1.9 Ma has not previously been recognized and suggests that widespread unroofing of the Crystalline Lesser Himalaya and to a lesser extent Nanga Parbat did not occur until after 1.9 Ma. Because regional erosion increased in the Pleistocene compared to the Pliocene, the relative increase in erosion from the Lesser Himalaya does not reflect slowing erosion in the Karakoram and Greater Himalaya. No simple links can be made between erosion and the development of the South Asian Monsoon, implying a largely tectonic control on Lesser Himalayan unroofing.This research has been supported by the USSSP (grant no. 355-001)

    Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada

    Get PDF
    Apatite fission track and (U-Th)/He thermochronological data provide new constraints on the timing of faulting and exhumation of the Wassuk Range, western Nevada, where east dipping normal faults have accommodated large-magnitude ENE-WSW oriented extension. Extensional deformation has resulted in the exhumation of structurally coherent fault blocks that expose sections of preextensional mostly granitic upper crust in the Grey Hills and central Wassuk Range. These fault blocks display westward tilts of ∌60° and expose preextensional paleodepths of up to ∌8.5 km, based on the structural reconstruction of tilted preextensional Tertiary andesite flows that unconformably overlie Mesozoic basement rocks. Apatite fission track and (U-Th)/He thermochronological data from the fault blocks constrain the onset of rapid footwall exhumation at ∌15 Ma. Fission track modeling results indicate rapid fault block exhumation occurred between ∌15 and 12 Ma, which is in agreement with Miocene volcanic rocks that bracket the tilting history. In addition, fission track and (U-Th)/He data suggest reduced rates of cooling following major extension, as well as renewed cooling related to active, high-angle faulting along the present-day range front starting at ∌4 Ma. Thermochronological data from structurally restored fault blocks indicate a preextensional Miocene geothermal gradient of 27° ± 5°C/km. The thermochronological constraints on the timing of extensional faulting and the eruptive history in the Wassuk Range imply a model for extension where crustal heating and volcanism precede the onset of rapid large magnitude extension, and where synextensional magmatism is suppressed during the highest rates of extension

    Earth's Dynamic Past Revealed by Detrital Thermochronometry

    Get PDF
    A dvances in detrital noble gas thermochronometry by Ar-40/Ar-39 and (U-Th)/He dating are improving the resolution of sedimentary provenance reconstructions and are providing new insights into the evolution of Earth's surface. Detrital thermochronometry has the ability to quantify tectonic unroofing or erosion, temporal and dynamic connections between sediment source and sink, sediment lag-times and transfer rates, the timing of deposition, and postdepositional burial heating. Hence, this technique has the unique ability to use the detrital record in sedimentary basins to reconstruct Earth's dynamic long-term landscape evolution and how basins are coupled to their hinterlands

    Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas

    Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland

    Get PDF
    Eocene to Miocene sedimentary strata of the Northern Alpine Molasse Basin in Switzerland are well stud- ied, yet they lack robust geochronologic and geochemical analysis of detrital zircon for provenance tracing purposes. Here, we present detrital zircon U–Pb ages coupled with rare- earth and trace element geochemistry to provide insights into the sedimentary provenance and to elucidate the tectonic ac- tivity of the central Alpine Orogen from the late Eocene to mid Miocene. Between 35 and 22.5 ± 1 Ma, the detrital zir- con U–Pb age signatures are dominated by age groups of 300–370, 380–490, and 500–710Ma, with minor Protero- zoic age contributions. In contrast, from 21 Ma to ∌ 13.5 Ma (youngest preserved sediments), the detrital zircon U–Pb age signatures were dominated by a 252–300 Ma age group, with a secondary abundance of the 380–490 Ma age group and only minor contributions of the 500–710 Ma age group. The Eo-Oligocene provenance signatures are consistent with in- terpretations that initial basin deposition primarily recorded unroofing of the Austroalpine orogenic lid and lesser contri- butions from underlying Penninic units (including the Lep- ontine dome), containing reworked detritus from Variscan, Caledonian–Sardic, Cadomian, and Pan-African orogenic cycles. In contrast, the dominant 252–300 Ma age group from early Miocene foreland deposits is indicative of the exhuma- tion of Variscan-aged crystalline rocks from the Lepontine dome basement units. Noticeable is the lack of Alpine-aged detrital zircon in all samples with the exception of one late Eocene sample, which reflects Alpine volcanism linked to incipient continent–continent collision. In addition, detrital zircon rare-earth and trace element data, coupled with zircon morphology and U/Th ratios, point to primarily igneous and rare metamorphic sources. The observed switch from Austroalpine to Penninic detri- tal provenance in the Molasse Basin at ∌ 21 Ma appears to mark the onset of synorogenic extension of the Central Alps. Synorogenic extension accommodated by the Simplon fault zone promoted updoming and exhumation the Penninic crys- talline core of the Alpine Orogen. The lack of Alpine detri- tal zircon U–Pb ages in all Oligo-Miocene strata corroborate the interpretations that between ∌ 25 and 15 Ma, the exposed bedrock in the Lepontine dome comprised greenschist-facies rocks only, where temperatures were too low for allowing zircon rims to grow, and that the Molasse Basin drainage network did not access the prominent Alpine-age Periadri- atic intrusions located in the area surrounding the Periadriatic Line

    Timing of magnetite growth associated with peridotite-hosted carbonate veins in the SE Samail ophiolite, Wadi Fins, Oman

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(5), (2020): e2019JB018632, doi:10.1029/2019JB018632.Carbonate‐altered peridotite are common in continental and oceanic settings and it has been suggested that peridotite‐hosted carbonate represent a significant component of the carbon‐cycle and provide an important link in the CO2 dynamics between the atmosphere, hydrosphere, and lithosphere. The ability to constrain the timing of carbonate and accessory phase growth is key to interpreting the mechanisms that contribute to carbonate alteration, veining, and mineralization in ultramafic rocks. Here we examine a mantle section of the Samail ophiolite exposed in Wadi Fins in southeastern Oman where the peridotite is unconformably overlain by Late Cretaceous‐Paleogene limestone and crosscut by an extensive network of carbonate veins and fracture‐controlled alteration. Three previous 87Sr/86Sr measurements on carbonate vein material in the peridotite produce results consistent with vein formation involving Cretaceous to Eocene seawater (de Obeso & Kelemen, 2018, https://doi.org/10.1098/rsta.2018.0433). We employ (U‐Th)/He chronometry to constrain the timing of hydrothermal magnetite in the calcite veins in the peridotite. Magnetite (U‐Th)/He ages of crystal sizes ranging from 1 cm to 200 ÎŒm record Miocene growth at 15 ± 4 Ma, which may indicate (1) fluid–rock interaction and carbonate precipitation in the Miocene, or (2) magnetite (re)crystallization within pre‐existing veins. Taken together with published Sr‐isotope values, these results suggest that carbonate veining at Wadi Fins started as early as the Cretaceous, and continued in the Miocene associated with magnetite growth. The timing of hydrothermal magnetite growth is coeval with Neogene shortening and faulting in southern Oman, which points to a tectonic driver for vein (re)opening and fluid‐rock alteration.This research was supported by a National Science Foundation (NSF) Graduate Research Fellowship to E.H.G. Cooperdock, the UTChron Laboratory at The University of Texas at Austin, the Chevron (Gulf) Centennial Professorship to D.F. Stockli, and by a Sloan Foundation grant awarded to P.B. Kelemen. We are grateful to Desmond Patterson for assistance and training with He measurements and data reduction, to Jessie Maisano for technical support with the X‐Ray Computed Tomography. These data and images were produced at the High‐Resolution X‐ray Computed Tomography Facility of the University of Texas at Austin. EHGC is grateful to Jaime Barnes, Richard Ketcham, Frieder Klein and Othmar MĂŒntener for helpful comments on an earlier version of this manuscript. Thank you to Fin Stuart and Uwe Ring for their helpful reviews, and Stephen Parman for feedback and editorial handling of the manuscript. The (U‐Th)/He data in this manuscript are available in the GeoChron repository (https://www.geochron.org) and sample IGSNs are in the SESAR database (http://www.geosamples.org).2020-10-0
    • 

    corecore